Solar Energy Technologies Program Peer Review

30kW Maintenance Free Stirling Engine for Concentrating Solar Power

CSP Program Team

Songgang Qiu

Infinia Corp sqiu@infiniacorp.com May 25, 2010

Overview

Timeline

- Project Start: March 1, 2008
- Project End: Dec 31, 2011
- Percent Complete: 60% (as of May 1, 2010)

Budget

- Total Project Funding:
 - Phase 1&2
 - DOE Share: \$1,236,701
 - Contractor Share: \$309,175

Barriers

 Capacity factors and Levelized Cost of Electricity (LCOE) for dish-Stirling power systems

Partners

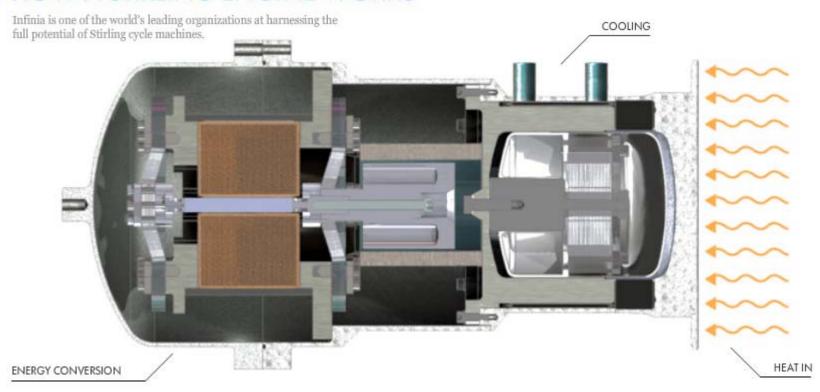
- Project Lead: Infinia Corp.
- Interactions/Collaborations:
 - Sandia National Labs
 - Ricardo

Challenges, Barriers or Problems

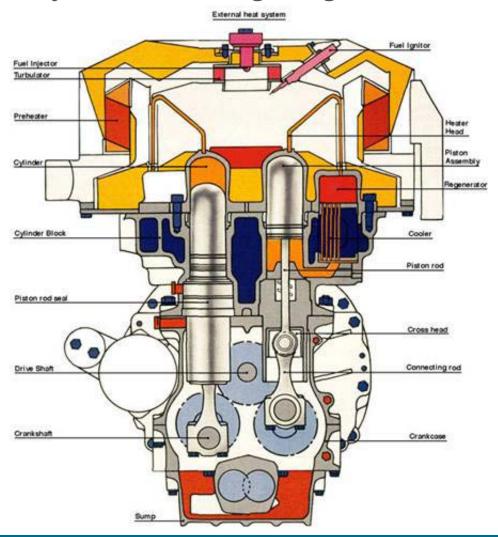
- Market Challenges, Barriers or Problems to be Addressed
 - Improving energy density of maintenance free Stirling engines
 - Combining long life, maintenance free free piston Stirling engines with the simplicity of multi-cylinder Stirling engines
 - Reducing Levelized Cost of Electricity (LCOE) of dish-Stirling power generators to 7¢/kWh
- Relevance: Successful demonstration of the 30kW multi-cylinder Stirling Engine
 - Reduces LCOE cost for CSP Stirling engines
 - Improves long term reliability and manufacturability of CSP Stirling engines

Relevance

Project Objective

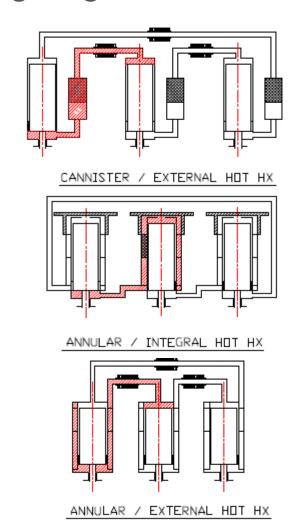

 Perform development work to verify functionality of a 30kW multicylinder Stirling engine, and demonstrate that functionality in a laboratory environment, followed by an on sun demo.

Support to DOE Goals


 This objective supports DOE goals to increase the use of CSP in the USA, making Stirling engine based CSP more cost competitive.

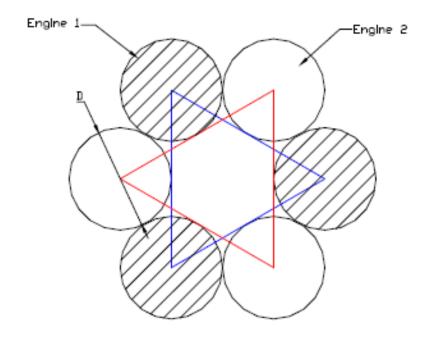
Single Cylinder Free Piston Stirling Engine

HOW A STIRLING ENGINE WORKS

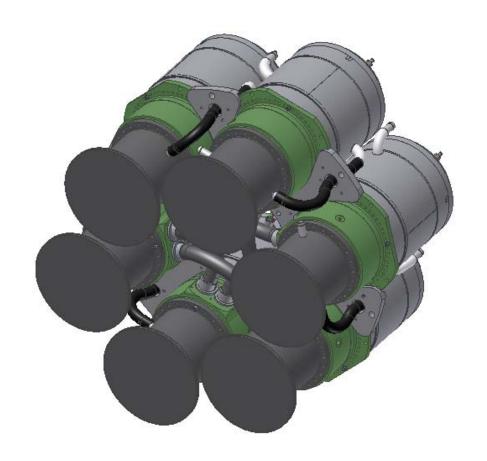

Kinematic Multi-Cylinder Stirling Engine

Multi-Cylinder Free Piston Stirling Engine

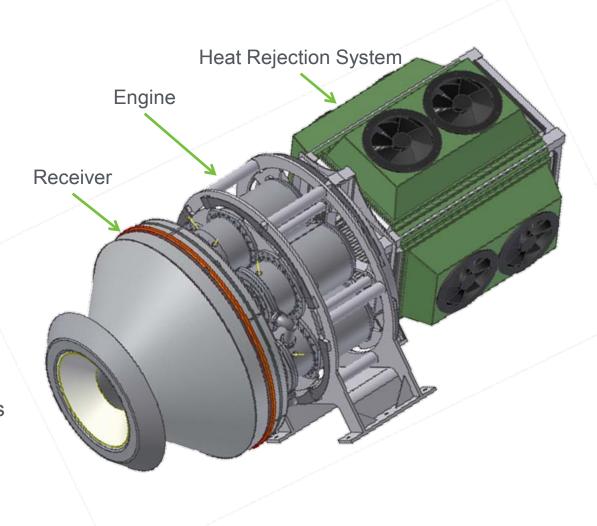

- Three different basic configurations are available.
- Annular construction with an integral hot heat exchanger chosen
- Minimizes engine footprint and complexity
- Leverages Infinia core competency


Multi-Cylinder Free Piston Stirling Engine

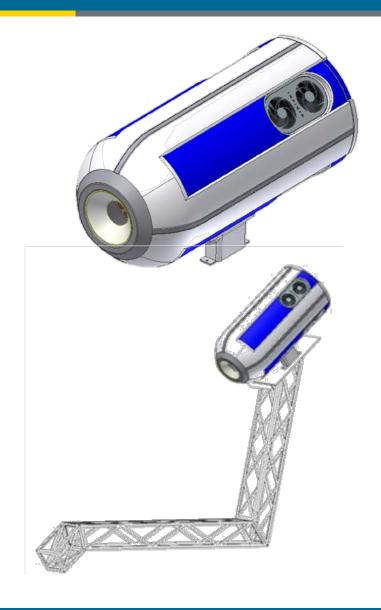
- Double acting, free piston design
- No displacer, connecting rods, cams, etc.
- Thermodynamic cycle forces piston phasing (120° for 3 cylinders)



- Engine 1 and 2 are connected as shown
- Simplest configuration to interconnect that produces no net vibration



- 6 Interconnected 5kW engine cylinders configured into a pair of 15kW engines
- Relative piston phasing cancels out vibration
- Estimated weight for the prototype, 900kg
- Preliminary production weight estimate of <500kg



- Heat Drive Core
 - Receiver is at the focal point of the reflecting dish
 - Heat Rejection System
 - Radiators
 - Fans
 - Pumps
 - Provides structural support to all components and boom mount attachment points

- Boom Mounted Heat Drive
 - Asthetically appealing shell over heat drive core
 - Boom mounts to dish

Project Timeline

		2008											2009												2010										
Phase	Task	1	2	3	4	5	6	5 7	, ;	8	9	10	11	12	1	2	3	4	5	6	7	8	9	1	0 1	11	12	1	2	3	4	5	6	7	8
1	1-Preliminary Design																																		
	2-Engine Integration/Interface design																																		
	3-Cost Analysis																																		
	4-Management																																		
2*	1-Detailed Design																																		
	2-Fabricate & Assemble																																		
	3-Evaluate Prototype																																		
	4-Refine Cost Analysis																																	L	
	5-Management																																		
3**			2010										2011												2012										
	1-Produce Field Engine & BOP																																		
	2- Install and Test																																		
	3- Verify Production Costs																																		
	4- Develop Production/Buisness Plan																																		
	5- Management																																		

Collaborations

- Infinia Corp. Lead
- Ricardo Cost Analysis
- Sandia National Laboratories Dish for the 30kW and testing support

Summary

- 30kW Multi-cylinder Stirling Engine
 - Lower complexity and part count than kinematic multi-cylinder
 Stirling engines
 - Longer life than kinematic multi-cylinder Stirling engines
 - Maintenance free over the life of the engine
- 30kW Program
 - Prototype fabrication is on track
 - Initial demonstration of the laboratory engine: summer 2010
 - On Sun demonstration: Spring/Summer 2011